Higher Hasse–Witt matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On higher rank numerical hulls of normal matrices

‎In this paper‎, ‎some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated‎. ‎A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given‎. ‎Moreover‎, ‎using the extreme points of the numerical range‎, ‎the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$‎, ‎where $A_1...

متن کامل

Higher Spin Alternating Sign Matrices

We define a higher spin alternating sign matrix to be an integer-entry square matrix in which, for a nonnegative integer r, all complete row and column sums are r, and all partial row and column sums extending from each end of the row or column are nonnegative. Such matrices correspond to configurations of spin r/2 statistical mechanical vertex models with domain-wall boundary conditions. The c...

متن کامل

Higher genus universally decodable matrices (UDMG)

We introduce the notion of Universally Decodable Matrices of Genus g (UDMG), which for g = 0 reduces to the notion of Universally Decodable Matrices (UDM) introduced in [8]. A UDMG is a set of L matrices over a finite field Fq, each with K rows, and a linear independence condition satisfied by collections of K + g columns formed from the initial segments of the matrices. We consider the mathema...

متن کامل

Higher Rank Numerical Hulls of Matrices

For any n×n matrix A , we use the joint higher rank numerical range, Λk(A, . . . ,Am) , to define the higher rank numerical hull of A . We characterize the higher rank numerical hulls of Hermitian matrices. Also, the higher rank numerical hulls of unitary matrices are studied. Mathematics subject classification (2010): 15A60,81P68.

متن کامل

Higher Rank Numerical Ranges of Normal Matrices

The higher rank numerical range is closely connected to the construction of quantum error correction code for a noisy quantum channel. It is known that if a normal matrix A ∈ Mn has eigenvalues a1, . . . , an, then its higher rank numerical range Λk(A) is the intersection of convex polygons with vertices aj1 , . . . , ajn−k+1 , where 1 ≤ j1 < · · · < jn−k+1 ≤ n. In this paper, it is shown that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2018

ISSN: 0019-3577

DOI: 10.1016/j.indag.2018.07.004